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Abstract. We analyze the dependence of heavy quark free energies on the baryon chemical potential µb

in 2-flavor QCD by performing a 6th order Taylor expansion in the chemical potential which circumvents
the sign problem. The bare quark mass at m̂/T = 0.4 corresponds to a pion mass of about 770 MeV and
is thus not in the range of physical quark masses but the quark mass dependence is known to be small
above Tc. At Nτ = 4 the lattices are coarse, however, we are using improved (p4 staggered) fermions. The
Taylor expansion coefficients of color singlet and color averaged free energies are calculated and from this
the expansion coefficients for the corresponding screening masses are determined. We find that for small
µb the free energies of a static quark–antiquark pair decrease in a medium with a net excess of quarks and
that screening is well described by a screening mass which increases with increasing µb. The µb-dependent
corrections to the screening masses are well described by perturbation theory for T >∼ 2Tc. In particular, we
find for all temperatures above Tc that the expansion coefficients for singlet and color averaged screening
masses differ by a factor 2.

PACS. 11.15.Ha, 11.10.Wx, 12.38Gc, 12.38.Mh

1 Introduction

Numerical studies of QCD provided quite detailed infor-
mation about the properties of matter at high tempera-
ture and vanishing net baryon density [1]. In particular,
the screening of static quark–antiquark sources at large
distances and their renormalization has been analyzed in
quite some detail [2–4]. Compared to this our knowledge
on the dependence of the equation of state and screening
at non-zero baryon number density, or equivalently, non-
zero baryon chemical potential (µb) is rather limited. The
µb-dependence of the QCD partition function [5] and the
HTL-resummation of the pressure [6] have been evaluated
only recently. Although in leading order of high temper-
ature perturbation theory the dependence of the Debye
screening mass on µb is well-known [7] neither the tem-
perature range for the validity of this perturbative result
nor the generic features of screening of heavy quark free
energies at non-zero µb have been analyzed so far with
non-perturbative methods in the vicinity of the QCD tran-
sition1.

Recently studies of the equation of state have success-
fully been extended to non-vanishing baryon chemical po-
tential using Taylor expansions [9] around µb = 0 as well

1 A first attempt to calculate heavy quark free energies at
non-zero quark chemical potential has been discussed in [8].

as reweighting techniques [10] and imaginary chemical po-
tentials [11]. We will use here the former approach to an-
alyze the screening of static quark–antiquark sources at
non-zero µb, i.e. in a medium with a non-vanishing net
quark density. We evaluate the Taylor expansion coeffi-
cients for correlation functions of heavy quark–antiquark
pairs and deduce from this expansion coefficients for the
screening mass.

For this work we analyzed gauge field configurations
using a p4-improved staggered fermion action with Nf = 2
degenerate quark flavors. We used the same data sample
that recently has been generated by the Bielefeld–Swansea
collaboration for the analysis of the equation of state [9].
This sample consists of 1000 up to 4000 gauge field config-
urations available for several bare gauge couplings below
and above the transition temperature. The lattice size is
163 ×4 and the bare quark mass, m̂/T = 0.4, corresponds
to a pion mass of about 770 MeV. In addition we generated
1000 configurations at T = 3Tc and 1600 at T = 4Tc to
check for the approach to the high temperature perturba-
tive regime. In addition to gauge invariant color averaged
free energies we also have analyzed color singlet free en-
ergies. To do so all gauge configurations have been trans-
formed to Coulomb gauge before evaluating the Polyakov
loop correlation functions.
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This paper is organized as follows. In the next sec-
tion we discuss the general setup for calculating Taylor
expansions for heavy quark free energies. Our numerical
results for singlet and color averaged free energies are pre-
sented in Sect. 3. In Sect. 4 we discuss the determination
of µb-dependent corrections to screening masses from the
free energies. Our conclusions are given in Sect. 5. In an
appendix we give detailed expressions for the Taylor ex-
pansion coefficients of purely gluonic observables.

2 Taylor expansion
of heavy quark free energies

A heavy (static) quark Q at site x is represented by the
Polyakov loop,

L(x) =
Nτ∏

x4=1

U4(x, x4) , (1)

which is an SU(3) matrix. A heavy antiquark Q̄ is de-
scribed by the corresponding hermitian conjugate matrix.
The free energy of a QQ̄-pair separated by a distance r is
then calculated from the expectation value of the correla-
tion function of L(0) and L†(r) where r points to a site
with distance r to 0. The dependence on the baryon chem-
ical potential µb or quark chemical potential µ ≡ µb/3
is established solely through the fermion determinant,
det M({Uρ(x)}, µ, m̂), with m̂ denoting the bare quark
mass. In order to avoid the sign problem, which arises from
Re (det M) not being positive definite for µ �= 0, Taylor
expansions in the quark chemical potential are used. This
allows us to perform our simulations at zero chemical po-
tential thereby restricting us to small chemical potentials.

A purely gluonic observable O like the Polyakov loop
L(x) or a corresponding correlation function does not ex-
plicitly depend on the quark chemical potential; it is cal-
culated in terms of link variables Uρ(x) of the gauge field
configuration which do not explicitly depend on µ. Any µ-
dependence of the expectation value 〈O〉µ thus arises from
the µ-dependence of the Boltzmann weights in the QCD
partition function, i.e. the µ-dependence of the fermion de-
terminant. Therefore we can apply the same method that
was used for the power series expansion of the equation of
state; expanding the fermion determinant in powers of µ
leads to a power series of our purely gluonic observable,

〈O〉µ = 〈O〉 · (1 + o1µ + o2µ
2 + · · · ), (2)

where 〈O〉 denotes the expectation value of O evaluated
for vanishing chemical potential. We consider observables
like the color averaged and singlet QQ̄-correlation func-
tions,

Oav(r) =
1
N

1
N2

c

∑
x,y

TrL(x) TrL†(y),

O1(r) =
1
N

1
Nc

∑
x,y

TrL(x)L†(y), (3)
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Fig. 1. The 0th order coefficients f1
QQ̄,0 and fav

QQ̄,0 for the
singlet and color averaged free energy in the vicinity of Tc.
f1

QQ̄,0 is matched to the T = 0 heavy quark potential at small
distances a

where the sum refers to all sites x,y with ‖x − y‖ = r
and N is the number of these x,y-pairs. As Oav,1 and
the corresponding expectation values are strictly real for
every single gauge field configuration the odd orders in
the expansion vanish as was argued in [12]. For observ-
ables like the Polyakov loop itself or static quark-quark
correlations like TrL(0)TrL(r) we also have to take into
account the odd orders which are in general non-vanishing.
In the appendix we give explicit formulas for calculating
the expansion coefficients of an arbitrary gluonic observ-
able up to 6th order in µ/T . We have used this to evaluate
the first three, non-vanishing expansion coefficients of the
purely real observables considered here.

We extract the color averaged free energy of a static
quark–antiquark pair from the Polyakov loop correlation
function

F av
QQ̄(r, T, µ) = −T ln 〈Oav(r)〉µ (4)

and the color singlet free energies from

F 1
QQ̄(r, T, µ) = −T ln

〈O1(r)
〉

µ
. (5)

We renormalize the Polyakov loop as described in [13] such
that at short distances and vanishing chemical potential
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Fig. 2. The 2nd order coefficients of the singlet a,c and color averaged b,d free energies for some selected temperatures below
a,b and above c,d Tc

the singlet free energy F 1
QQ̄

(r, T, 0) matches the zero tem-
perature heavy quark potential. This also fixes the renor-
malization of the Polyakov loop and all its correlation
functions. In particular, this renormalizes also the color
averaged free energies. As all our calculations have been
performed on lattices with temporal extent Nτ = 4 the
smallest available distance at which this matching could
be performed is r0 = 1/4T .

In order to determine the expansion coefficients of the
color averaged (av) and singlet (1) free energies,

F x
QQ̄(r, T, µ)

= fx
QQ̄,0(r, T ) + fx

QQ̄,2(r, T )
(µ

T

)2
+ fx

QQ̄,4(r, T )
(µ

T

)4

+ fx
QQ̄,6(r, T )

(µ

T

)6
+ O

((µ

T

)8
)

, (6)

with x = av and 1, we apply (A.18) to the corresponding
Polyakov loop correlation functions. We again note that
these are strictly real on every gauge field configuration
and thus have an expansion in even powers of µ/T . Ex-
plicit formulas used for the calculation of the expansion
coefficients fav

QQ̄,n
(r, T ) and f1

QQ̄,n
(r, T ) are given in the

appendix.

3 Numerical results on QQ̄ free energies

In Figs. 1–4 we show the leading and higher order expan-
sion coefficients up to 6th order in µ/T expressed in units
of the string tension2. We do not include data for all tem-
perature values analyzed by us because for T � Tc they
have very small absolute values and for T < Tc they suffer
from large statistical errors and are still consistent with
zero.

The leading order results, fav
QQ̄,0(r, T ) and f1

QQ̄,0(r, T )
are consistent with previous analyses of static quark–
antiquark free energies performed in 2-flavor QCD at
µ = 0 on the same data set [3]. For the 2nd order ex-
pansion coefficients we display separately results below
(Fig. 2a,b) and above (Fig. 2c,d) the µ = 0 transition tem-
perature, Tc. As can be seen the 2nd order expansion co-
efficients are always negative and increase in magnitude
in the vicinity of Tc.

The corresponding results for the 4th and 6th order
expansion coefficients are shown in Figs. 3 and 4, respec-

2 We use βc = 3.649 [9,12] as the bare pseudo-critical cou-
pling. Results on the string tension [14], a

√
σ, are then used to

set the temperature scale in units of T .
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Fig. 3. The 4th order coefficients of the singlet a and color
averaged b free energies for temperatures above Tc

tively. Here we only show results above Tc; below Tc the ex-
pansion coefficients are consistent with being zero within
errors even at rather short distances and errors grow large
for rT ≥ 1. We note that all expansion coefficients shown
in Figs. 2 to 4 vanish at small distances. This shows that
a quark–antiquark pair is not affected by the surrounding
medium if its size becomes small. This observation also
justifies our procedure to renormalize the Polyakov loop
by matching the µ = 0 singlet free energy to the T = 0
heavy quark potential. The renormalization constant is
independent of µ.

Also close to Tc, where the µ-dependence of the free
energies is strongest, the absolute values of the 4th and
6th order expansion coefficients are of the same order as
or smaller than the 2nd order expansion coefficient. There-
fore the 4th and 6th order contributions rapidly become
negligible for µ/T < 1.

Being the results of quite a few terms with opposite
signs the errors are large for the higher order expansion
coefficients especially at 6th order. Nevertheless they show
that at high temperature the 2nd and 4th order expan-
sion coefficients are opposite in sign, fav,1

QQ̄,2(r, T ) < 0 and

fav,1
QQ̄,4(r, T ) > 0. This is consistent with the expectation

that at high temperature the asymptotic large distance
value of the heavy quark free energy is proportional to
the value of the Debye mass [15]. In this limit one ob-
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Fig. 4. The 6th order coefficients of the singlet a and color
averaged b free energies for temperatures above Tc

tains alternating signs of the expansion coefficients of the
heavy quark free energies when one expands the pertur-
bative Debye mass [7],

mD(T, µ)
g(T )T

=
mD,0(T )
g(T )T

√
1 +

3Nf

(2Nc + Nf )π2

(µ

T

)2
, (7)

with mD,0(T ) = g(T )T
√

Nc

3 + Nf

6 denoting the Debye
mass for vanishing baryon chemical potential. Although
the statistical significance of our results for fav,1

QQ̄,6(r, T )
rapidly drops with increasing temperature this pattern of
alternating signs seems to be valid also at 6th order at
least for temperatures T >∼ 1.05Tc.

Except for temperatures close to the transition tem-
perature the asymptotic behavior of the free energies is
reached at distances rT >∼ 1.5. We determined their large
distance value by taking the weighted average of the val-
ues at the five largest distances. The results are shown
in Fig. 5. We note that |fav,1

QQ̄,2(∞, T )| have a pronounced

peak at Tc. This also holds for |fav,1
QQ̄,2(r, T )| evaluated at

any fixed distance r. In fact, fav,1
QQ̄,2(r, T ) is proportional

to the 2nd derivative of a partition function including a
pair of static sources, QQ̄. It thus shows the characteristic
properties of a susceptibility in the vicinity of a (phase)
transition point.
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Fig. 5. The coefficients for the singlet and color averaged free energies at infinite distance rT versus temperature. They have
been obtained from a weighted average of fav

QQ̄,n(r, T ) and f1
QQ̄,n(r, T ) at the five largest distances

Figure 5 also shows that at large distances, within the
statistical errors of our analysis, the expansion coefficients
for the color averaged and singlet free energies approach
identical values,

fav
QQ̄,n(∞, T ) = f1

QQ̄,n(∞, T ), (8)

where

fx
QQ̄,n(∞, T ) = lim

r→∞ fx
QQ̄,n(r, T ) , with x = av, 1.

(9)

This has been noted before at µ = 0 and suggests that
at large distances, e.g. for rT >∼ 1.5, the quark–antiquark
sources are screened independently from each other; their
relative color orientation thus becomes irrelevant.

Including all terms up to 6th order we calculated the
singlet and color averaged free energies in the range from
µ/T = 0.0 up to 0.8. Results for the color singlet free en-
ergies evaluated at a few values of temperature are shown
in Fig. 6. Similar results hold for the color averaged free
energies. The free energies decrease relative to their val-
ues at µ/T = 0 for all temperatures above and below Tc.

At small distances the curves always agree within errors.
With increasing distance a gap opens up which reflects the
decrease in free energy at non-zero µ. As indicated by the
asymptotic values fav,1

QQ̄,2(∞, T ), which give the dominant
µ-dependent contribution at large distances, the medium
effects are largest close to the transition temperature and
become smaller with increasing temperature.

4 Screening masses

For temperatures above Tc and large distances r the heavy
quark free energies are expected to be screened,

∆F av,1
QQ̄

(r, T, µ) = F av,1
QQ̄

(∞, T, µ) − F av,1
QQ̄

(r, T, µ)

∼ 1
rn

e−mav,1(T,µ)r, (10)

with n = 1, 2 for the singlet and color averaged free ener-
gies respectively. In the infinite distance limit we thus can
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Fig. 6. The singlet free energies F 1
QQ̄ as function of distance for finite chemical potential and for various temperatures

extract the screening masses,

mav,1(T, µ) = − lim
r→∞

1
r

ln
(
∆F av,1

QQ̄
(r, T, µ)

)
. (11)

We use this as our starting point to derive a Taylor expan-
sion for the screening masses. Expanding the logarithm in
(11) in powers of µ/T it is obvious that also the screening
masses are even functions in µ/T ,

mav,1(T, µ)

= mav,1
0 (T ) + mav,1

2 (T )
(µ

T

)2
+ mav,1

4 (T )
(µ

T

)4

+ mav,1
6 (T )

(µ

T

)6
+ O

((µ

T

)8
)

. (12)

To analyze the approach of the various expansion coeffi-
cients to the large distance limits we introduce effective
masses, mx

eff,n(r, T ), with x = av, 1,

mx
eff,2(r, T ) = −1

r

∆fx
QQ̄,2(r, T )

∆fx
QQ̄,0(r, T )

, (13a)

mx
eff,4(r, T )
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Fig. 7. Example for the distance dependent effective masses
converging at large distance to the expansion coefficients for
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= −1
r

∆fx
QQ̄,4(r, T )

∆fx
QQ̄,0(r, T )

− 1
2

(
∆fx

QQ̄,2(r, T )

∆fx
QQ̄,0(r, T )

)2
 , (13b)

mx
eff,6(r, T )

= −1
r

[
∆fx

QQ̄,6(r, T )

∆fx
QQ̄,0(r, T )

−
∆fx

QQ̄,4(r, T )∆fx
QQ̄,2(r, T )

∆fx
QQ̄,0(r, T )2

+
1
3

(
∆fx

QQ̄,2(r, T )

∆fx
QQ̄,0(r, T )

)3
 . (13c)

In the limit of large distances these relations define the
expansion coefficients of the color averaged and singlet
screening masses,

mav,1
n (T ) = lim

r→∞ mav,1
eff,n(r, T ) . (14)

As will become obvious in the following the effective
masses defined above show only little r-dependence. They
are thus suitable for a determination of the µ-dependent
corrections to the screening masses. This is not the case
for the leading order, µ-independent, contribution. In or-
der to determine m1

0(T ) we use an ansatz for the large
distance behavior of the singlet free energy motivated by
leading order high temperature perturbation theory,

f1
QQ̄,0(r, T ) = f1

QQ̄,0(∞, T ) − 4
3

α0(T )
r

e−m1
0(T )r. (15)

We fit our data to this equation using α0(T ) and m1
0(T )

as fit parameters where f1
QQ̄,0(∞, T ) is determined as de-

scribed in the previous section. We choose the same fitting
procedure as in [3] namely averaging results received from
five fit windows with left borders between rT = 0.8 and
rT = 1.0 and right border at rT = 1.73. While the above
ansatz is known to describe rather well the large distance
behavior of the color singlet free energy, it also is known
that the sub-leading power-like corrections are much more
difficult to control in the case of the color averaged free en-
ergy. For this reason we will analyze here only the leading
order contribution to the singlet screening mass.

Results for effective masses in the singlet channel are
shown in Fig. 7 as function of rT for one value of the tem-
perature. As can be seen the asymptotic value is indeed
reached quickly before the errors grow large at distances
rT >∼ 1. The expansion coefficients mav,1

2 (T ), mav,1
4 (T )

and mav,1
6 (T ) are thus well determined from the plateau

values of these ratios. Similar results hold in the color av-
eraged channel. We found the left border of the plateau
to lie between rT = 0.48 close to Tc and rT = 0.23 for
T > 1.15Tc. Results for the various expansion coefficients
are shown in Fig. 8. This figure shows that at high temper-
atures the µ-dependent corrections to the screening mass
of the color averaged free energies mav(T, µ) are twice as
large as those of the (Debye) screening mass in the singlet
channel, m1(T, µ). This is expected from perturbation the-
ory, which suggests that the leading order contribution to
the color singlet free energy is given by one gluon exchange
while the color averaged free energy is dominated by two
gluon exchange. Using resummed gluon propagators then
leads to screening masses that differ by a factor of 2,

m1
n(T ) =

1
2
mav

n (T ), n = 2, 4, 6 , (16)

Our results suggest that this relation holds already close
to Tc (Fig. 8). We thus have no evidence for large con-
tributions from the magnetic sector, which is expected to
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Fig. 8. Expansion coefficients of screening masses in the color singlet (m1
n) and color averaged (mav

n ) channels. Except for n = 0
mx

n(T ) is determined from the r → ∞ limit of (13). The lines are the first order perturbative predictions according to (20). The
dotted lines in a show the 1σ-range of the χ2-fit with parameter A

dominate the screening in the color averaged channel at
asymptotically large temperatures [16] and which would
violate the simple relation given in (16).

In order to compare the expansion coefficients with
perturbation theory we need to specify the running cou-
pling g(T ). Following [3] we use the next-to-leading order
perturbative result for the running of the coupling with
temperature but allow for a free overall scale factor. We
thus fit our data on the T -dependence of the leading order
(µ = 0) screening mass by the ansatz

m1
0(T ) = A · 2√

3
g(T )T , (17)

with the 2nd order perturbative running coupling,

g(T )2 (18)

=
[

29
24π2 ln

(
µ̃T

ΛMS

)
+

115
232π2 ln

(
ln
(

µ̃T

ΛMS

))]−1

,

where we use Tc/ΛMS = 0.77(21) and the scale µ̃ = 2π
as in [3]. Fitting our data to (17) with fit parameter A

yields

A = 1.397(18), (19a)

which is almost identical to the result in [3] where the data
for T = 3Tc were still missing. Our fit result is included
in Fig. 8. We also compare the temperature dependence of
m1

2(T ), m1
4(T ) and m1

6(T ) with corresponding expansion
coefficients of the perturbative Debye mass which result
from an expansion of (7) using (17) as the 0th order. These
expansion coefficients are alternating in sign,

mD,2(T ) =
√

3
4π2 · Ag(T ), (20a)

mD,4(T ) = − 3
√

3
64π4 · Ag(T ), (20b)

mD,6(T ) =
9
√

3
512π6 · Ag(T ). (20c)

At least for the 2nd order coefficient m1
2(T ) we find that

this yields a satisfactory description of the numerical re-
sults for T >∼ 2Tc. Equation (20) shows that subsequent
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Fig. 9. The ratio mx
2(T )/m1

0(T ) (a) and the screening mass
m1(T ) evaluated for µ/T = 0.0, 0.4 and 0.8 including the 0th
and 2nd order expansion coefficients in µ (b). The line in (a)
shows the leading order perturbative prediction, which is 3/8π2

terms differ by about an order of magnitude, which ex-
plains why our signal for a non-zero contribution m1

n(T )
is rather poor for n > 2.

From (20) we find mD,2(T )/mD,0(T ) = 3/8π2 which
is independent of A and g(T ) and is compared with our
numerical results in Fig. 9a. We note that the perturba-
tive value for this ratio is already reached for T/Tc >∼ 2. In
Fig. 9b we show the µ-dependence of the singlet screening
mass for small values of µ/T . Here we included only con-
tributions from the 0th and 2nd order expansion in the
calculation of m1(µ, T )/T .

5 Conclusions

We have analyzed the response of color singlet and color
averaged heavy quark free energies to a non-vanishing
baryon chemical potential and have calculated the result-
ing dependence of screening masses on the chemical poten-
tial. Using a Taylor expansion in µ/T we get stable results
for the leading, non-vanishing correction, m1

2(T ), which is
O((µ/T )2). We find that this correction in absolute units
as well as its ratio with the leading order screening mass,

m1
0(T ), is large in the vicinity of the transition tempera-

ture. The ratio m1
2(T )/m1

0(T ) is in agreement with pertur-
bation theory for T >∼ 2Tc indicating that the expansion
coefficients m1

n(T ) receive the same multiplicative rescal-
ing as the leading order screening mass.

A calculation of the µ-dependent corrections to the
screening mass in the color averaged channel shows that
these corrections are twice as large as those in the color
singlet channel for all temperatures T > Tc. This agree-
ment with leading order perturbation theory indeed is
quite remarkable as it suggests that the leading contribu-
tion to the µ-dependent corrections of the color averaged
screening mass is due to two-gluon exchange.

The higher order expansion coefficients of the screen-
ing mass vanish within statistical errors at temperatures
larger than 1.2Tc. The analysis of the asymptotic behav-
ior of the free energies themselves, however, suggests that
these corrections are non-zero but small at high temper-
ature and have alternating signs. This is consistent with
the leading order perturbative result for the Debye mass
subsequent expansion coefficients of which drop by more
than an order of magnitude and alternate in sign as they
arise from an expansion of a square root.

Our results thus suggest that at least for small values of
the chemical potential and fixed temperature the screen-
ing length in a baryon rich quark gluon plasma decreases
with increasing value of the chemical potential. This is
consistent with the expectation that the transition to the
high temperature phase shifts to lower temperatures at
non-zero baryon chemical potential.
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Appendix A: Calculation of expansion
coefficients

The µ-dependent expectation value of a complex quantity
O is

〈O〉µ =
1

Zµ

∫
DUO∆e−S =

∫
DUO∆e−S∫
DU∆e−S

, (A.1)

where Zµ is the partition function for finite µ and where
∆ = (det M(µ))Nf /4 is the determinant of the fermion
matrix. In the following we denote expectation values for
vanishing µ as 〈· · ·〉 = 〈· · ·〉0. We define

Ln ≡ dn ln∆

dµn

∣∣∣∣
µ=0

=
Nf

4
dn ln detM

dµn

∣∣∣∣
µ=0

. (A.2)

The Ln can be written as traces over the inverse of the
fermion matrix and its derivatives

L1 =
Nf

4
Tr
(

M−1 ∂M

∂µ

)∣∣∣∣
µ=0

, (A.3)
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L2 =
Nf

4
Tr
(

M−1 ∂2M

∂µ2 − M−1 ∂M

∂µ
M−1 ∂M

∂µ

)∣∣∣∣
µ=0

,

(A.4)

L3 =
Nf

4
Tr
(

M−1 ∂3M

∂µ3 − 3M−1 ∂M

∂µ
M−1 ∂2M

∂µ2

+ 2M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ

)∣∣∣∣
µ=0

, (A.5)

L4 =
Nf

4
Tr
(

M−1 ∂4M

∂µ4 − 4M−1 ∂M

∂µ
M−1 ∂3M

∂µ3

− 3M−1 ∂2M

∂µ2 M−1 ∂2M

∂µ2

+ 12M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂2M

∂µ2 (A.6)

− 6M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ

)∣∣∣∣
µ=0

,

L5 =
Nf

4
Tr
(

M−1 ∂5M

∂µ5 − 5M−1 ∂M

∂µ
M−1 ∂4M

∂µ4

− 10M−1 ∂2M

∂µ2 M−1 ∂3M

∂µ3

+ 20M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂3M

∂µ3

+ 30M−1 ∂M

∂µ
M−1 ∂2M

∂µ2 M−1 ∂2M

∂µ2

− 60M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂2M

∂µ2 (A.7)

+ 24M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ

× M−1 ∂M

∂µ

)∣∣∣∣
µ=0

,

L6 =
Nf

4
Tr
(

M−1 ∂6M

∂µ6 − 6M−1 ∂M

∂µ
M−1 ∂5M

∂µ5

− 15M−1 ∂2M

∂µ2 M−1 ∂4M

∂µ4

− 10M−1 ∂3M

∂µ3 M−1 ∂3M

∂µ3

+ 30M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂4M

∂µ4

+ 60M−1 ∂M

∂µ
M−1 ∂2M

∂µ2 M−1 ∂3M

∂µ3

+ 60M−1 ∂2M

∂µ2 M−1 ∂M

∂µ
M−1 ∂3M

∂µ3

+ 30M−1 ∂2M

∂µ2 M−1 ∂2M

∂µ2 M−1 ∂2M

∂µ2

− 120M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂3M

∂µ3

− 180M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂2M

∂µ2 M−1 ∂2M

∂µ2

− 90M−1 ∂M

∂µ
M−1 ∂2M

∂µ2 M−1 ∂M

∂µ
M−1 ∂2M

∂µ2

+ 360M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂2M

∂µ2

− 120M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ

× M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ

)∣∣∣∣
µ=0

. (A.8)

From

M†(µ) = γ5M(−µ)γ5 (A.9)

it follows that Ln is real for even and imaginary for odd
n. Using ∆ = eln ∆ we find

∆(µ) (A.10)
= ∆(0)

(
1 + D1µ + D2µ

2 + · · · + D6µ
6 + O(µ7)

)
,

where

D1 = L1, (A.11a)

D2 =
1
2
(
L2

1 + L2
)
, (A.11b)

D3 =
1
6
(
L3

1 + 3L1L2 + L3
)
, (A.11c)

D4 =
1
24
(
L4

1 + 6L2
1L2 + 3L2

2 + 4L1L3 + L4
)
,(A.11d)

D5 =
1

120
(
L5

1 + 10L3
1L2 + 15L1L

2
2 + 10L2

1L3

+ 10L2L3 + 5L1L4 + L5) , (A.11e)

D6 =
1

720
(
L6

1 + 15L4
1L2 + 45L2

1L
2
2 + 15L3

2

+ 20L3
1L3 + 60L1L2L3 (A.11f)

+ 10L2
3 + 15L2

1L4 + 15L2L4 + 6L1L5 + L6
)
.

We immediately see that Dn is real for even and imaginary
for odd n. Because

Zµ =
〈
1 + D1µ + · · ·D6µ

6〉+ O(µ7) (A.12)

is real one has 〈Dn〉 = 0 for odd n. We consider the case
where the observable O is independent of µ. The expecta-
tion value (A.1) then becomes

〈O〉µ (A.13)

=
〈O〉 + 〈OD1〉µ + · · · + 〈OD6〉µ6

1 + 〈D2〉µ2 + · · · + 〈D6〉µ6 + O(µ7).

Expanding in powers of µ we get

〈O〉µ = 〈O〉 (1 + O1µ + (−D2 + O2) µ2

+ (−D2O1 + O3) µ3

+
(D2

2 − D4 − D2O2 + O4
)
µ4

+
(D2

2O1 − D4O1 − D2O3 + O5
)
µ5

+
(−D3

2 + 2D2D4 − D6 + D2
2O2 − D4O2
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− D2O4 + O6) µ6)+ O(µ7), (A.14)

where we use the notation

Oi =
〈ODi〉
〈O〉 , (A.15a)

Di = 〈Di〉 . (A.15b)

In the case that O is strictly real on every configuration
ODn is imaginary for odd n. In order to keep 〈O〉µ real
〈ODn〉 has to vanish for odd n and the preceding expan-
sion simplifies to

〈O〉µ = 〈O〉 (1 + (−D2 + O2) µ2

+
(D2

2 − D4 − D2O2 + O4
)
µ4

+
(−D3

2 + 2D2D4 − D6 + D2
2O2 − D4O2

− D2O4 + O6) µ6)+ O(µ8), (A.16)

i.e. this formula is applicable to the correlation function
in (3).

Because free energies are calculated from logarithms
of correlation functions we give here the expansion coeffi-
cients of the logarithm of an observable O which can be
obtained by inserting the above expansion into the expan-
sion of the logarithm. For a generic, not necessarily real
observable the expansion is

ln 〈O〉µ

= ln 〈O〉 + O1µ +
(

−D2 − 1
2
O2

1 + O2

)
µ2

+
(

1
3
O3

1 − O1O2 + O3

)
µ3

+
(

1
2
D2

2 − D4 − 1
4
O4

1 + O2
1O2 − 1

2
O2

2

− O1O3 + O4) µ4

+
(

1
5
O5

1 − O3
1O2 + O1O2

2 + O2
1O3 − O2O3

− O1O4 + O5) µ5

+
(

−1
3
D3

2 + D2D4 − D6 − 1
6
O6

1 + O4
1O2 (A.17)

− 3
2
O2

1O2
2 +

1
3
O3

2 − O3
1O3 + 2O1O2O3 − 1

2
O2

3

+ O2
1O4 − O2O4 − O1O5 + O6

)
µ6 + O(µ7).

For real observables this reduces to

ln 〈O〉µ = ln 〈O〉

+ (−D2 + O2) µ2 +
(

1
2
D2

2 − D4 − 1
2
O2

2 + O4

)
µ4

+
(

−1
3
D3

2 + D2D4 − D6 +
1
3
O3

2 − O2O4 + O6

)
µ6

+ O(µ8). (A.18)
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Tóth, JHEP 0405, 046 (2004)

11. M. D’Elia, M.P. Lombardo, Phys. Rev. D 70, 074509
(2004)

12. C.R. Allton, S. Ejiri, S.J. Hands, O. Kaczmarek, F.
Karsch, E. Laermann, Ch. Schmidt, L. Scorzato, Phys.
Rev. D 66, 074507 (2002)

13. O. Kaczmarek, F. Karsch, P. Petreczky, F. Zantow, Phys.
Lett. B 543, 41 (2002)

14. F. Karsch, E. Laermann, A. Peikert, Nucl. Phys. B 605,
579 (2001)

15. L.D. Landau, E.M. Lifshitz, Statistical physics; E. Gava,
R. Jengo, Phys. Lett. B 105, 285 (1981)

16. P. Arnold, L.G. Yaffe, Phys. Rev. D 52, 7208 (1995)


